Plot utils#
Visualization utils.
- class lsst.cst.visualization.Band(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)#
Exposure bands available.
- class lsst.cst.visualization.BoxInteract(image_display, options=BoxInteractOptions(color='red'))#
Interactive plot with a selectable box tool to show extra information.
- Parameters:
options (
BoxInteractOptions, Optional) – Box plot options.image_display (
ImageDisplay) –
- options#
alias of
BoxInteractOptions
- show()#
Show interactive display.
- class lsst.cst.visualization.ButlerCalExpDataFactory(configuration, collection)#
Factory of calexp from a Butler.
- Parameters:
configuration (
Configuration) – Configuration available for a butler.collection (
Collection) – Collection to be searched (in order) when reading datasets.
- get_cal_exp_data(calexp_id)#
Check for the exposure in the Butler collection and returns a handler to get exposure information.
- Parameters:
calexp_id (
CalExpId) – CalExp information to search for.- Raises:
ValueError – When the Exposure could not be found inside the butler collection.
- Returns:
exposure_data – Instance of a CalExpData which can be used to obtain exposure data.
- Return type:
- class lsst.cst.visualization.CalExpData#
Interface to get information from a Calexp.
- abstract property cal_exp_id#
Exposure Identifier
- Returns:
exposure_id – Information of the exposure.
- Return type:
ExposureId
- abstract get_image()#
Plot image .
- Returns:
calexp – Exposure data from calexp.
- Return type:
- abstract get_image_bounds()#
Exposure Image bounds.
- Returns:
image_bounds – Bounds of the cal_exp Exposure.
- Return type:
Tuple[int]
- abstract get_sources()#
Calexp sources.
- Returns:
sources – Sources from the calexp.
- Return type:
- class lsst.cst.visualization.CalExpDataFactory#
Interface for the CalExp Factories
- get_cal_exp_data(calexp_id)#
Check for the exposure and returns a handler to get exposure information.
- Parameters:
calexp_id (
CalExpId) – CalExp information to search for.- Raises:
ValueError: – When the CalExp data could not be found.
- Returns:
exposure_data – Instance of a CalExpData which can be used to obtain exposure data.
- Return type:
- class lsst.cst.visualization.CalExpId(visit, detector, band)#
Calexp information.
- class lsst.cst.visualization.CalExpImageDisplay(cal_exp_data, title=None, xlabel='X', ylabel='Y', show_detections=True, image_options=ImageOptions(cmap='Greys_r', height=600, width=700, xaxis='bottom', yaxis='left', padding=0.01, font_size={'title': '8pt'}, colorbar=True, toolbar='right', show_grid=True, tools=[]))#
Plot using Calexp data, includes the image and also the sources.
- Parameters:
cal_exp_data (
CalExpData) – cal exp data to be plottitle (
str, Optional) – Plot title. Default value: CalExpId information.xlabel (
str, Optional) – Plot xlabel. Default value: ‘X’.ylabel (
str, Optional) – Plot ylabel. Default value: ‘Y’.show_detections (
bool, Optional) – True if detections should be added to the plot. Default value: True.image_options (
ImageOptions, Optional) – Image options.
- delete()#
Delete underlying image.
- property image#
Underlying image.
- Returns:
image – Underlying image used to create the plot.
- Return type:
np.ndarray
- options#
alias of
ImageOptions
- rasterize()#
Rasterize the image.
- render()#
Render the image.
- show()#
Show the image.
- property sources#
Exposure sources.
- Returns:
sources – Sources from the exposure
- Return type:
Tuple[pandas.Series]
- property transformed_image#
Underlying transformed image.
- Returns:
image – Underlying transformed image shown in the plot.
- Return type:
np.ndarray
- class lsst.cst.visualization.Collection(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)#
Collections available: - i22: 2.2i/runs/DP0.2 .
- class lsst.cst.visualization.Configuration(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)#
Butler configurations available - DP02: dp02.
- class lsst.cst.visualization.HTMLSaver(output_dir='/home/runner')#
HTML plot saver
- Parameters:
output_dir (
str, default:'/home/runner') –
- save(plot, filename)#
Save image as html in filename.
- Parameters:
filename (
str) – Name and path of the file where the image will be saved.plot (
ImageDisplay|_InteractiveDisplay) –
- class lsst.cst.visualization.HoverSources(image_display, options=PointsOptions(fill_color=None, size=9, color='darkorange', marker='o'))#
Interactive display including the sources.
- Parameters:
options (
PointsOptions, Optional) – Display points options.image_display (
ImageDisplay) –
- options#
alias of
PointsOptions
- show()#
Show interactive display.
- class lsst.cst.visualization.ImageArrayDisplay(image, bounds, title=None, xlabel='X', ylabel='Y', options=ImageOptions(cmap='Greys_r', height=600, width=700, xaxis='bottom', yaxis='left', padding=0.01, font_size={'title': '8pt'}, colorbar=True, toolbar='right', show_grid=True, tools=[]))#
Plot for an ExposureF
- Parameters:
- property image#
Underlying image.
- Returns:
image – Underlying image used to create the plot.
- Return type:
np.ndarray
- options#
alias of
ImageOptions
- rasterize()#
Rasterize the image.
- render()#
Render the image.
- show()#
Show the image.
- property sources#
Exposure sources.
- Returns:
sources – Sources from the exposure
- Return type:
Tuple[pandas.Series]
- property transformed_image#
Underlying transformed image.
- Returns:
image – Underlying transformed image shown in the plot.
- Return type:
np.ndarray
- class lsst.cst.visualization.ImageDisplay#
Plot interface image.
- delete()#
Delete underlying image.
- static from_cal_exp_data(cal_exp_data, title=None, xlabel='X', ylabel='Y', show_detections=True, image_options=ImageOptions(cmap='Greys_r', height=600, width=700, xaxis='bottom', yaxis='left', padding=0.01, font_size={'title': '8pt'}, colorbar=True, toolbar='right', show_grid=True, tools=[]))#
Create a Plot class for CalExpData.
- Parameters:
cal_exp_data (
CalExpData) – exposure instance returned from butler.title (
str) – title of the plot.xlabel (
str) – label for the x coordinates.ylabel (
str) – label for the y coordinates.image_options (
ImageOptions) – Options for the underlying plot object.sources_options (
PointsOptions) – Options for the underlying sources plot object.show_detections (
bool, default:True) –
- Returns:
results – Plot instance for the exposureF including sources.
- Return type:
Plot
- static from_image_array(image, bounds, title='No title', xlabel='X', ylabel='Y', image_options=ImageOptions(cmap='Greys_r', height=600, width=700, xaxis='bottom', yaxis='left', padding=0.01, font_size={'title': '8pt'}, colorbar=True, toolbar='right', show_grid=True, tools=[]))#
Create a Plot class for the exposureF image.
- Parameters:
image (
numpy.array) – image to be plotted.title (
str) – title of the plot.xlabel (
str) – label for the x coordinates.ylabel (
str) – label for the y coordinates.image_options (
ImageOptions) – Options for the underlying plot object.
- Returns:
results – Plot instance for the exposureF
- Return type:
Plot
- abstract property image#
Underlying image.
- Returns:
image – Underlying image used to create the plot.
- Return type:
np.ndarray
- abstract rasterize()#
Rasterize the image.
- abstract render()#
Render the image.
- abstract show()#
Show the image.
- abstract property sources#
Exposure sources.
- Returns:
sources – Sources from the exposure
- Return type:
Tuple[pandas.Series]
- property transformed_image#
Underlying transformed image.
- Returns:
image – Underlying transformed image shown in the plot.
- Return type:
np.ndarray
- class lsst.cst.visualization.ImageOptions(cmap='Greys_r', height=600, width=700, xaxis='bottom', yaxis='left', padding=0.01, font_size=<factory>, colorbar=True, toolbar='right', show_grid=True, tools=<factory>)#
Image plot options.
- Parameters:
cmap (
str) – sets the colormap of the image, for example: Greys_r, viridis, plasma, inferno, magma, cividis or rainbow.height (
int) – Height of the plot in pixels.width (
int) – Width of the plot in pixels.xaxis (
str) – Position of the xaxis ‘bottom’, ‘top’.yaxis (
str) – Position of the yaxis.padding (
float) – space around the plot.font_size (
dict) – Font size for axis labels, titles, and legend.colorbar (
bool) – adds a colorbar to the plot.toolbar (
str) – toolbar position ‘left’, ‘right’, ‘above’, bellow’.show_grid (
bool) – displays grid lines on the plot.tools (
list) – List of Bokeh tools to include to the default ones. []
- to_dict()#
Returns a dictionary with the keys as option name and the values as the option value.
- class lsst.cst.visualization.OnClickInteract(image_display, options=OnClickInteractOptions(color='white', marker='x', size=20))#
Interactive display with a tap tool to show extra information.
- Parameters:
options (
OnClickInteract, Optional) – Interact display options.image_display (
ImageDisplay) –
- options#
alias of
OnClickInteractOptions
- show()#
Show interactive display.